История Фэндома
Русская Фантастика История Фэндома История Фэндома

Б. Ляпунов

СПУТНИКИ НАД ПЛАНЕТОЙ

СТАТЬИ О ФАНТАСТИКЕ

© Б. Ляпунов, 1959

Ляпунов Б. Открытие мира: Изд. 2, перераб. и дополнен. - М.: Мол. гвардия, 1959. - С. 56-92.

Пер. в эл. вид Ю. Зубакин, 2007

Назад   В начало   Вперёд

ВЛАСТЬ ЗЕМЛИ

Мы, жители Земли, – ее пленники, прикованные к ней цепями, которые до недавнего времени невозможно было разорвать. Никто не избавлен от власти земного притяжения, и каждая попытка преодолеть эту непокорную силу природы дается нелегко.

Трудно оторваться от Земли. Ценой большого спортивного мастерства, тренировки, напряжения воли завоевываются новые сантиметры при прыжках в высоту. Два метра шестнадцать сантиметров – последний мировой рекорд.

Еще труднее совершить полет. Здесь мускулы не помогут. «Человек полетит, опираясь не на силу своих мускулов, а на силу своего разума», – говорил великий русский ученый Николай Егорович Жуковский. Механические – птицы – самолеты и планеры, дирижабли и воздушные шары – таковы были до недавнего времени наши средства в борьбе с земным тяготением.

Вот успехи, достигнутые в этой борьбе: тридцать восемь километров высоты – самолет 2, тридцать – стратостат. Много или мало? Атмосфера простирается на тысячу и более километров. До ближайшего нашего соседа во вселенной – Луны – триста восемьдесят четыре тысячи километров. Значит, еще очень далеко и до пределов воздушного океана и тем более до соседнего небесного тела. А ведь уже почти исчерпаны возможности тех летательных аппаратов, какими еще недавно мы располагали.

Далеко простирается власть планеты. Земное тяготение действует на огромном расстоянии. Оно удерживает Луну и заставляет наш естественный спутник обращаться вокруг Земли. Оно не дает и искусственным спутникам улететь в глубины вселенной.

До сих пор из-за него ни один летательный аппарат не смог покинуть родную планету и отправиться в межпланетные просторы. Ракета – новое средство завоевания высот – поднимается намного выше самолета. Она уже стала космической путешественницей в полном смысле этого слова.

...Вот ракета установлена на пусковом столе. В баки залито топливо, начинают работать топливные насосы, запускается двигатель. В какое-то мгновение язык пламени появляется у хвоста ракеты. Она еще неподвижна, еще не может бороться с притяжением, не пускающим ее ввысь. Но сила тяги растет: сначала она меньше веса ракеты, затем сравнивается с ним. Вес тянет вниз, сила тяги – вверх. В единоборстве побеждает тяга, и ракета в первые мгновения очень медленно, словно нехотя, а затем все быстрее и быстрее поднимается, устремляясь в небо.

Наблюдающим взлет кажется, будто какой-то огненный смерч уносит стальную сигару. И скоро уже за ракетой невозможно уследить простым глазом: лишь яркая полоска выхлопных газов чертит путь по небосводу.

Сила тяжести – главный противник межпланетных перелетов. Чтобы покинуть нашу планету и отправиться в мировые дали, нужно прежде всего победить тяжесть, вырваться из ее оков. Как это сделать? Обратимся к законам баллистики.

Снаряд со сравнительно небольшой начальной скоростью пролетит десяток-другой километров. Снаряд дальнобойного орудия, вылетевший из дула со скоростью полтора километра в секунду, смог бы не только «выпрыгнуть» за атмосферу, но и проделать в десять раз более длинный путь.

С ростом начальной скорости дуга, по которой летит снаряд, будет все больше и больше вытягиваться. При горизонтальной скорости около восьми километров в секунду снаряд, летящий в плоскости, которая проходит через центр земного шара, будет двигаться вокруг Земли и станет маленькой луной, спутником нашей планеты.

Так случилось с незадачливыми артиллеристами из романа Жюля Верна «500 миллионов Бегумы». Они не попали в избранную ими цель на Земле потому, что снаряд их вылетел из пушки со слишком большой скоростью, и своим выстрелом подарили планете крошечную искусственную луну.

Но это было лишь в фантастическом романе. На деле победителем из первой схватки с тяжестью вышла все же ракета, только особого устройства – об этом немного позже. Именно она позволила достигнуть «первой космической» скорости и создать спутники Земли.

Из-за действия сил земного тяготения спутник не сможет сойти со своего замкнутого пути и умчаться в глубины мирового пространства. Он не сможет и упасть на Землю – его удерживает центробежная сила, появляющаяся при вращении. Сила эта уравновешивает земную тяжесть. В результате не полное освобождение от власти земного притяжения, но первый шаг к нему – движение вокруг планеты.

Если скорость возрастает, орбита спутника – эллипс, один из фокусов которого совпадает с центром земного шара, будет изменяться. При начальной скорости в 11,2 километра в секунду корабль полетит по параболе. Однако притяжение Солнца не даст ему удалиться по этой незамкнутой кривой в бесконечность, а сделает его самостоятельным небесным телом, но уже не спутником Земли, а ее братом, таким же, как и она, спутником Солнца, членом солнечной семьи. И здесь победителем вышла ракета – она одолела земную тяжесть и вышла из-под власти Земли. Первый советский ракетный корабль, достигнув второй космической скорости – свыше 11 километров в секунду, уже совершает свое путешествие во вселенной.

Наконец, достигнув скорости 16,7 километра в секунду, снаряд, полетевший в сторону движения Земли по орбите, освобождается не только от власти родной планеты, но и от власти Солнца. Он покинет солнечную систему и отправится к другой звезде.

Достижение таких скоростей теперь тоже реально для современной техники. «Советская техника имеет реальные предпосылки для того, чтобы забросить тела типа первых американских спутников в межзвездное пространство, удалить их из сферы солнечного притяжения», – пишет член-корреспондент Академии наук СССР А. Ильюшин.

На разных планетах сила тяжести различна. На Юпитере она придавила бы человека, так что он мог бы двигаться лишь с большим трудом. На малых планетах – астероидах – прыжок поднимет человека на несколько сот метров или даже унесет в межпланетное пространство. Чтобы освободиться от власти Луны, надо иметь скорость около 2,5 километра в секунду, от власти Марса – 5, Венеры – 10,3 километра в секунду.

Мы не знаем еще природы тяготения – силы, действующей во всей вселенной, хотя наука и идет по пути раскрытия ее сущности. Выдумкой романистов остается до сих пор «броня», позволяющая укрыться от силы тяжести. Правда, в иностранных журналах можно в последнее время прочитать сенсационные статьи о невесомых самолетах, о «гравипланах», которые будто бы могут уменьшать свой вес или терять его совсем. За дымовой завесой сенсаций пока еще нельзя разглядеть, где кончается вымысел и начинается правда. Вероятно, работы по управлению этой вездесущей силой природы ведутся. Но это и все, что пока можно сказать. Пока ощутимые плоды приносит другой способ борьбы.

Уничтожить тяжесть нельзя, но бороться с нею можно. В борьбе за преодоление силы земного притяжения нашим средством будет скорость.

Когда же борьба закончится успехом, когда космический корабль вырвется из-под власти планеты, двигатель ему будет не нужен. Инерция понесет его через просторы вселенной к другим мирам. Не тратя ни капли горючего, корабль пролетит миллионы, десятки миллионов километров.

Подчиняясь законам всемирного тяготения, он может направиться по заранее рассчитанным путям к Луне или планетам, сможет побывать в любом уголке солнечной системы.

Циолковскому было шестнадцать лет, когда он придумал центробежную машину для подъема в мировое пространство. Ему показалось, что он сделал великое открытие: нашел дорогу к звездам. Юноша всю ночь бродил по Москве, переживая восторг открытия.

«Я был так взволнован, даже потрясен, что не спал целую ночь... и все думал о великих следствиях моего открытия, – вспоминал он. – Но уже к утру я убедился в ложности моего изобретения. Разочарование было так же сильно, как и очарование. Эта ночь оставила след на всю мою жизнь, и через 30 лет я еще вижу иногда во сне, что поднимаюсь к звездам на моей машине и чувствую такой же восторг, как в ту незапамятную ночь».

Однако Циолковский не сдался. Неудача не сломила его, а заставила настойчивее искать. Основа верна: только быстрое движение разорвет цепи тяжести, только достигнув космической скорости, можно навсегда освободиться из-под власти Земли и устремиться в глубины вселенной.

Но как получить такую скорость? Достижимы ли для человека «заветные» космические скорости, открывающие дорогу в межпланетное пространство? Этот вопрос мучает Циолковского. Он перебирает известные способы и отбрасывает их один за другим.

Может быть, пушка? Теоретически выстрел мог бы сообщить летательному аппарату нужную скорость. Но – увы! – люди в снаряде, выброшенном в мировое пространство исполинской пушкой, были бы раздавлены. Слишком резко увеличивается скорость снаряда, слишком силен толчок при выстреле. Даже при огромной длине ствола ускорение раздавит пассажиров.

Можно было бы добиться космической скорости с помощью электромагнитной пушки, которая не выбрасывает снаряд силой пороховых газов, а разгоняет его переменным магнитным полем гигантской катушки. Но и здесь удар снаряда о воздух при вылете из дула будет таким сильным, что человек его вряд ли перенесет. Кроме того, полетев в лишенном двигателя, неуправляемом снаряде, нельзя надеяться на возвращение.

Центробежная сила? И о ней мысль давно пришлось оставить, и она не поможет.

Проекты межпланетных сообщений с помощью гигантских метательных машин также неосуществимы. Лишь с ракетой – подлинным кораблем вселенной – связаны надежды на осуществление путешествия в космос.

Но прежде чем появилось верное решение, прежде чем были достигнуты, как вспоминал потом Циолковский, «результаты столь замечательные, что умолчать о них было бы недопустимо», творческая мысль ученого проделала долгий и сложный путь.

Надо было ясно представить себе сначала, какие условия придется встретить кораблю среди планет и звезд. Воздуха нет, безвоздушное пространство. Как двигаться в нем, если нет никакой опоры для движения? Движение невозможно без отталкивания. Пешеход отталкивается от земли, винт корабля – от воды, пропеллер самолета – от воздуха.

«Если опоры нет, ее надо взять с собой», – думает ученый. На листке бумаги возникает эскиз необычного аппарата.

«Снаряд для путешествия в свободном пространстве, который я сейчас опишу, будет служить для передвижения человека и различных предметов... без неподвижной опоры и по желаемому направлению», – написано сверху. Ниже – рисунок: шар с людьми, его толкает отдача, возникающая при стрельбе ядрами из пушки.

Конечно, такому шару до настоящего межпланетного корабля еще очень далеко. Это только идея, принцип, первоначальный набросок. Его Циолковский сделал в 1883 году в рукописи «Свободное пространство».

Через тринадцать лет ему неожиданно попалась брошюра с интригующим заголовком: «Новый принцип воздухоплавания, исключающий атмосферу, как опорную среду». Прочел – и разочаровался: расчетов никаких, принцип же был ему известен ранее. Впоследствии ученый вспоминал, что брошюра все же дала толчок мысли, подтвердила верность избранного пути. Он начал вычисления, серьезную работу.

В поисках аппарата, несущего опору для движения в себе самом, Циолковский останавливается на ракете. Но не сразу увидел он в ней прообраз будущего космического корабля.

Были и раньше люди, предлагавшие применить ракету для полета человека. Проект первого в мире порохового ракетного летательного аппарата принадлежит Кибальчичу. Известны и многочисленные изобретатели всевозможных воздухоплавательных приборов реактивного типа – прошлый век изобилует подобными примерами.

Идеям ракетного полета отдавали также дань поэты и писатели. Вспомним путешествие Сирано де Бержерака на Луну, описанное Ростаном, произведения Жюля Верна и многих других. Смутное сознание истины руководило ими. Истина же была не близко, и велика заслуга того, кто приподнял завесу времени и разглядел в игрушке, рассыпающей по небу разноцветные звездочки фейерверка, завтрашнего победителя тяжести, который раздвинет для человечества границы познанного мира.

Никто до Циолковского так ясно, четко, неопровержимо не доказал, что ракета и есть давно искомый корабль вселенной. И никто так полно и всесторонне не раскрыл ее возможности, поистине изумительные по грандиозности будущих применений.

Циолковским выведены основные формулы. Они объясняют закономерности полета ракеты, утверждая основу основ – возможность достижения космических скоростей. Ему сразу же хочется представить себе, как это будет, и он берется за перо, чтобы не только математическими выкладками, но и взором писателя проникнуть в будущее. У мечты есть теперь прочный фундамент. Повесть «Вне Земли», начатая им еще в 1896 году, тем и характерна, что точный расчет определяет ее содержание. Фантастика стала подлинно научной.

Небесный корабль – ракета – приобрел для ученого, наконец, конкретные формы. В 1903 году он публикует первое в мире исследование, посвященное проблеме ракетного полета. В нем он дает описание будущей межпланетной ракеты.

Длинный обтекаемый корпус – нельзя забывать, что в начале пути сотни километров воздушной среды. Двойная обшивка с жидким кислородом внутри, чтобы охлаждать стенки, раскаленные трением о воздух. Герметически закрытая пассажирская каюта со всем необходимым для жизни и наблюдений. Хранилища жидкого топлива, насосы, подающие топливо в камеру сгорания, и расширяющаяся труба–сопло. Через него вытекает поток газов – та опора, отталкивание от которой движет ракету. Наконец рули из несгораемого тугоплавкого материала, поставленные на пути газовой струи. Поворот руля отклоняет струю и вызывает поворот самого корабля. Вот устройство ракеты, уносящей человека во вселенную.

Ракетой можно управлять – это не снаряд, который, вылетев из пушки, становится беспомощной игрушкой тяготения. Скорость, направление полета, ускорение при взлете – все в руках пилота.

Более полувека назад опубликовал Циолковский описание своего корабля.

Техника за полвека шагнула далеко вперед. Еще нет пассажирской каюты в современной ракете, но эта ракета, предугаданная Циолковским, уже поднялась в мировое пространство. Она не только совершает путешествие вокруг Земли, не только поднимается с приборами за атмосферу, но и путешествует в межпланетном пространстве.

Современная наука и техника осуществили то, что предначертал Циолковский.

Необходимы автоматические приборы, управляющие по заранее намеченному плану движением ракеты и силой взрывания, писал ученый. Они созданы теперь: ракеты-автоматы стали частыми гостями в высоких слоях атмосферы. Автоматические лаборатории подняты ракетами в преддверие космоса, и один за другим появляются спутники у нашей планеты. Появился искусственный спутник и у Солнца.

Необходимо также найти наиболее подходящие вещества для взрывания, указывал Циолковский. Такие вещества найдены, но химия ракетных топлив еще не сказала своего решающего слова. И в перспективе – ядерная энергетика, обещающая ракете невиданные космические скорости.

Опыты должны руководить нами, подчеркивал ученый, говоря о создании двигателя, о выборе материалов. И то и другое создано уже не только для высотных, но и для межпланетных ракет. Но металлургия и ракетная техника тоже не сказали еще своего решающего слова.

Много трудностей предстоит одолеть, прежде чем человек отправится во вселенную, предупреждал Циолковский. Мы знаем это, но мы помним и другие его слова: все данные науки за то, что победа рано или поздно будет одержана!

РАКЕТНЫЕ ПОЕЗДА

Языком математических символов выразил Циолковский свое величайшей важности открытие. Он установил непреложный закон, которому подчиняется движение ракеты: скорость ее возрастает до огромных величин, если запас топлива достаточно велик.

Сколько, однако же, понадобится топлива ракете, чтобы превратиться в спутника Земли? Сколько его требуется для перелета на Луну? В первом случае топливный запас должен в пятьдесят раз превышать вес самой ракеты, во втором – в двести.

Таковы результаты приближенных расчетов. На практике эти цифры еще более возрастут. Кроме того, нельзя забывать о возвращении на Землю – для этого тоже нужно топливо. Оказывается, цифры угрожающе велики.

В современном ракетном самолете, предке будущего межпланетного корабля, топливо весит столько же, сколько машина, – единица на единицу. В современной крупной ракете – втрое больше. Разница, как видим, огромная. Казалось бы, опять безнадежный тупик! Ибо вместить такое колоссальное количество топлива не в состоянии никакая ракета, как бы велика она ни была.

Океанский теплоход берет на борт топлива всего десятую долю своего водоизмещения. Крупнейший в мире самолет весит сто восемьдесят тонн, из них на долю горючего приходится примерно половина, и лишь на рекордных скоростных самолетах удавалось запасать его в количествах двух третей от полетного веса.

Примеры, пожалуй, не очень удачные, так как самолет, корабль и ракета друг на друга не похожи. Но они показывают, каким может быть относительный запас топлива у транспортных сооружений XX века. Сколь бы легкими материалами мы ни располагали, никакие ухищрения не помогут построить гигант, сверх всякой меры начиненный горючим.

Есть, правда, и другой путь. Его подсказывает тот же основной закон механики ракетного полета. Оказывается, наибольшая скорость ракеты зависит еще и от того, как быстро вытекают газы из двигателя. Она тем больше, чем быстрее движение газовой струи.

Сейчас скорость истечения газов достигает двух с половиной километров в секунду. Стоит увеличить ее вдвое, и ракета достигнет круговой скорости при всемеро меньшем запасе топлива. В десять раз снизится запас топлива, необходимый для перелета на Луну. Запаса, в пятьдесят раз большего, чем вес конструкции, вполне хватит тогда для вылета из солнечной системы, для полета к звездам.

Так теория межпланетных путешествий подходит к решению проблемы скорости.

Работы Циолковского дали результаты столь грандиозные, что о них ранее не могли даже и думать. Человечество накануне полета во вселенную. Ясна задача, намечены средства ее решения, готов эскиз межпланетного корабля.

Казалось бы, трудности позади, инженерам остается только воплотить эскизы в чертежи, чертежи – в металл. И топливо для ракет есть – ведь ракетный двигатель создан давно, и люди будут готовы к космическому рейсу. Летают же они с огромными скоростями на реактивных самолетах! Но громадный запас топлива, который надо взять с собой, лишает всякой надежды достигнуть заветной цели. Она остается такой же далекой, как и раньше, словно не было мучительных поисков, словно не помогали математика и механика найти единственно верное решение, словно не преодолевались человеком одно за другим препятствия, поставленные природой.

Все дело в мощном источнике энергии. И хотя в наши дни энергетика ставит на службу человеку скрытые природой колоссальные силы, ведет наступление на атомное ядро, атомной ракеты пока все еще нет.

Те, кто складывал оружие без боя, говорили: «Забудьте о дороге к звездам, ждите, пока сила, скрытая в недрах атома, не будет поставлена на службу технике». Но те, кто верил в могущество разума, продолжали поиски.

Почти четверть века назад инженер Цандер, последователь Циолковского, предложил смелую идею – соединить межпланетную ракету с самолетом, который поднимет ее, а потом будет отдан в жертву во имя скорости. Части самолета, расплавленные в особом котле, добавятся к топливу и пойдут в пищу ракетному двигателю. Металлическое топливо даст возможность сэкономить общий запас горючего, необходимый для вылета в мировое пространство.

Позднее Цандером был разработан проект межпланетной ракеты, соединенной с двумя самолетами. Один из них, большой, должен был поднять ракету с Земли и послужить частично в качестве дополнительного топлива. На другом, малом, путешественники возвратились бы на Землю.

Цандер пробовал сжигать металлы, измельченные в порошок, искал способы практически доказать осуществимость своей идеи. На страницах его сочинений за сухими выкладками скрыта страстная уверенность в правоте этого дела, ставшего делом всей его жизни. «По моему убеждению, – пишет он, – ракеты, использующие большую часть своей конструкции в качестве горючего, будут первыми, при помощи которых удастся... отделиться от земного шара...»

Нельзя забывать, что эти слова писались в начале тридцатых годов нашего века, когда только начинали по-настоящему крепнуть крылья у самолета, а до ракеты, которая совершила бы прыжок за атмосферу и стала чемпионом скорости, было еще далеко. Новаторская идея Цандера и до сих пор остается в арсенале ракетостроения. Время покажет, что даст она технике космического транспорта.

Новые идеи выдвигал и Циолковский. После Великой Октябрьской социалистической революции к нему пришло заслуженное признание. Советское правительство окружило ученого заботой и вниманием. Работая, он продолжал поиски, искал ответа на вопрос, как преодолеть трудности, связанные с получением космических скоростей.

В двадцатом году, вернувшись к повести «Вне Земли», он написал: «От простой ракеты перешли к сложной, составленной из нескольких простых». Громадная ракета разделена на отдельные ячейки, в каждой из которых есть свой ракетный двигатель и запас топлива. Работать они могут все одновременно или поочередно. Так уже легче: груз как бы разбит на части. Но... облегчение весьма относительное: ведь отработанный отсек ракеты остается мертвым балластом, его надо тащить с собой, а для этого понадобится горючее.

А что, если сбрасывать ненужный балласт, облегчая движение всему кораблю? Через девять лет Циолковский выпускает книгу «Космические ракетные поезда».

«Одиночной ракете, чтобы достигнуть космической скорости, надо давать большой запас горючего, – отмечает он. – Поезд же дает возможность или достигать больших космических скоростей, или ограничиться сравнительно небольшим запасом составных частей взрывания».

«Поезд» – название не совсем удачное. В ракетном поезде нет вагонов, он состоит из одних паровозов. Это соединение нескольких ракет. Каждая из них способна тянуть или толкать остальные.

Как эстафету, передают ракеты друг другу право вести весь составной межпланетный корабль. Скорость его постепенно возрастает. Сделав свое дело, ракеты-ускорители отделяются и возвращаются на Землю. Последняя оставшаяся ракета с пассажирами и полезным грузом побеждает силу тяжести, и ее скорость достигает космической.

Как вывод из основного закона ракетного полета, Циолковский наметил два пути повышения скорости ракеты: увеличение запаса топлива и увеличение скорости истечения газов. Идеей составной ракеты он подсказал еще одну возможность: чем больше число ракет в поезде, тем больше окончательная скорость.

Теоретически восьмиракетный поезд, снабженный топливом, которое мы уже имеем или получим в ближайшем будущем, мог бы вырваться в мировое пространство. Вдобавок ракеты-ускорители не пропадают даром: их можно возвратить и использовать снова и снова, чтобы отправить в путешествие сколько угодно поездов.

Конечно, составную ракету построить не так-то просто. Однако теперь, спустя четверть века после рождения идеи, жизнь начала подтверждать верность найденного Циолковским пути. Круговая скорость – восемь километров в секунду, вторая космическая скорость – свыше одиннадцати километров в секунду – таковы результаты, достигнутые ракетным поездом благодаря успехам современной техники.

Циолковский прекрасно отдавал себе отчет в том, насколько все-таки сложное и дорогое дело ракетные поезда. Поэтому он до конца своих дней, даже будучи тяжело больным, настойчиво искал более простых путей достижения космической скорости.

И вот, наконец, он сообщил о новом открытии:

«Сорок лет я работал над реактивным полетом, в результате чего дал – по общему признанию, первый в мире – теорию реактивного движения и схему реактивного корабля. Через несколько сотен лет, – думал я, – такие приборы залетят за атмосферу и будут уже космическими кораблями. Непрерывно вычисляя и размышляя над скорейшим осуществлением этого дела, я натолкнулся на новую мысль относительно достижения космических скоростей.

Последствием этого открытия явилась уверенность, что такие скорости гораздо легче получить, чем я предполагал. Возможно, что их достигнут через несколько десятков лет, и, может быть, современное поколение будет свидетелем межпланетных путешествий».

Переливание горючего в полете – вот этот новый прием достижения высоких космических скоростей. С Земли стартует не поезд, а несколько соединенных бок о бок ракет. Их двигатели работают одновременно, все они набирают скорость, пока не израсходуют часть топливного запаса. Тогда половина ракет пополняет свои баки за счет остальных. Пустые отделяются и возвращаются на Землю, оставшиеся продолжают лететь, уже полностью заправленные топливом.

Этот прием повторяется несколько раз, и в конце концов остается последняя, пассажирская ракета, разогнанная остальными уже почти до космической скорости. Как и раньше, ракета теперь не бессильна, ее баки полны: еще одно решающее усилие – и на циферблате указателя скорости стрелка доходит до заветной цифры.

В ракетном поезде ускорители берут на себя тяжесть огромного запаса топлива, которую не под силу нести одной ракете. Однако каждый ускоритель должен толкать весь поезд и, значит, иметь двигатель с чрезвычайно большой тягой.

В новом варианте составной ракеты ускорители не только делят между собой топливный запас, но и соединенными усилиями, работой всех своих двигателей, а не какого-нибудь одного, помогают достигнуть космической скорости.

Есть проекты, идеи, мысли, которые принадлежат будущему, и оценить их по достоинству может только время.

Более четверти века прошло со времени рождения первого в мире самолета до торжества авиации. Десятилетия ждала воплощения идея реактивного двигателя. Столетие понадобилось, чтобы набросок совершенного теплового двигателя – газовой турбины – превратился в инженерный проект, а затем в реальную машину.

Ракета на жидком топливе, предложенная Циолковским в начале нашего века, поднялась в воздух лишь в конце двадцатых годов. Но разве мог кто-нибудь тогда, глядя на ее робкий взлет, сказать, что уже полтора десятилетия спустя она будет совершать полеты на сотни километров! А от ракеты-спутника Земли и межпланетной ракеты тогда, казалось, отделяли нас многие десятки лет... Жизнь внесла свои поправки: от первого взлета ракеты до первого спутника прошло всего двадцать восемь лет!

Так и сейчас трудно оценить полностью все значение трудов Циолковского и других ученых, решающих проблему достижения космических скоростей. Вероятно, и сейчас развитие техники внесет что-то новое, чего нельзя было ранее предугадать. Возможно, будут предложены другие проекты, намечены иные, более короткие и менее сложные пути.

ПИОНЕРЫ ПОКОРЕНИЯ КОСМОСА

У этого шарика с длинными усами антенн оказалась самая удивительная судьба, какую только можно себе представить для творения человеческих рук.

Стремясь сохранить для грядущих поколений память о наших днях, двадцать лет назад на Всемирной выставке в Нью-Йорке американцы погребли глубоко в земле «бомбу времени». В прочный металлический футляр положили наиболее характерные предметы нашего века, в число которых попали библия, сигареты «Кэмел» и модная дамская шляпка. Вот чем хотели поразить они своих далеких потомков – жителей семидесятого века. Неизвестно, конечно, какие мысли вызовет такая находка.

Наш же шарик «прожил» всего девяносто четыре дня. Он залетел в космос и не вернулся на Землю. На Всемирной выставке в Брюсселе миллионы людей увидели копию первого искусственного небесного тела. Оригинал не сохранился, но память о нем, несомненно, переживет века, и человечество навсегда сохранит сознание величия этого шага – запуска первого спутника.

Пионер покорения космоса имел скромный и отнюдь не внушительный вид. Размером с большой мяч, он поблескивал гладко отполированной металлической поверхностью. Ничего загадочного не было и в торчащих в разные стороны штырях антенн. И тем не менее при взгляде на него люди испытывали какое-то особенное чувство. Появился ничтожно малый по сравнению с планетами, но полноправный член солнечной семьи! Как и они, как и Луна, этот шарик подчинялся законам небесной механики, хотя был создан не природой, а людьми! Он превратил человека в гражданина вселенной, он доказал, что людям покорятся просторы космоса, как некогда покорилась Земля.

Одна цифра, связанная с первым спутником, поразила иностранных ученых. Некоторые из них даже спрашивали у советских коллег: не ошибка ли это? Может быть, запятая здесь стоит не на месте – не 83,6, а 8,36? Речь шла о весе. Да, он был достаточно велик. За каждый килограмм, посланный в космос, в путешествие вокруг Земли, надо платить дорогой ценой – огромной тратой энергии. А успехи химии ракетных топлив, в свою очередь, достаются тяжелым трудом, годами опытов, обширными изысканиями целой армии людей. И не одних только химиков, а инженеров и ученых самых разных специальностей, ибо ракета-спутник воплощает в себе достижения «переднего края» ряда отраслей техники, ряда областей науки.

Еще большее изумление вызвала другая цифра. Вес аппаратуры и оборудования второго советского» спутника составил 508,3 килограмма! Герметическая кабина с Лайкой уже явилась богато оборудованной лабораторией для изучения на опыте вопросов космической медицины. Кроме нее, в передней части ракеты, превратившейся в спутник, разместились еще разнообразные приборы. Одни из них несли «службу Солнца» – регистрировали излучения, которые поглощаются атмосферой и не доходят до поверхности Земли. Другие служили «ловушками» космических лучей. Третьи отмечали температуру и давление. Два радиопередатчика, питание для них и всего приборного хозяйства, аппаратура, передающая результаты измерений, – дополняли груз.

А в мае 1958 года мир был поражен новой победой наших ученых, инженеров и рабочих.

Мощной ракетой-носителем был выведен на орбиту третий спутник, намного превосходящий по своим данным первые два. Он проносился над земной поверхностью, удаляясь от нее почти на 1 900 километров. Вес и размеры третьего спутника таковы, что его с полным правом можно назвать подлинно космическим кораблем. Вес – 1 327 килограммов, длина – 3,57 метра, диаметр – 1,73 метра – эти цифры говорят сами за себя. И, несмотря на большие параметры, продолжительность жизни третьего спутника ожидается много большей, чем у первых двух: не 94, не 103 дня, а значительно дольше!

Богато оснащенный различными приборами, спутник позволяет проводить всевозможные геофизические и физические исследования. Свойства ионосферы, состав и давление воздуха в верхних слоях атмосферы, магнитное поле Земли, космическое и солнечное излучения, микрометеоры – вот перечень проблем, которые исследует спутник. Трудно переоценить значение нового шага во вселенную!

Наш третий спутник-гигант – большая космическая лаборатория. Одна его аппаратура весит почти тонну. Богатое приборное оборудование – характерная черта, отличающая его от двух его младших собратьев.

Впервые спутник оснащен приборами, которые позволяют непосредственно измерять давление и состав самых верхних слоев атмосферы.

Батарея на третьем спутнике состоит из нескольких секций, размещенных спереди, на боковой поверхности и на заднем днище. Благодаря такому устройству батарея дает ток при любом положении спутника относительно Солнца. Этот дополнительный источник питания позволил уменьшить вес, за счет чего оказалось возможным разместить на спутнике больше приборов. Вопрос о том, насколько хорошо будет работать солнечная батарея в условиях космического полета, представляет большой интерес для будущего.

За спутником ведется постоянное наблюдение с помощью радиотехнических и оптических средств. Все данные наблюдений обрабатываются быстродействующими счетными электронными машинами.

И третий советский спутник внес свой вклад в дело изучения вселенной. Теперь уже полностью выполнена вся намеченная программа научных измерений.

Десятки тысяч наблюдений дали возможность точно рассчитать его орбиту, определить, как тормозится он атмосферой. А это позволяет судить о плотности воздуха на больших высотах. Когда же спутник, облетая Землю, приближался к ней, давление и плотность измерялись специальными манометрами. Оказалось, что на высоте 266 километров плотность в 10 миллиардов раз меньше, чем у поверхности нашей планеты. А при подъеме еще на 100 километров она уменьшается дополнительно в 10 раз.

Обнаружены очень интересные факты. Атмосфера с заметно ощутимой плотностью простирается гораздо выше, чем предполагали до сих пор. Неожиданно велика оказалась напряженность электрического поля в «верхней» атмосфере Земли.

Еще более совершенные приборы позволили расширить наши представления о космических лучах. Выяснилось, что Земля окружена ореолом из быстро-движущихся частиц, который она удерживает своим магнитным полем. Получены новые данные о плотности метеорного вещества. Наконец успешно работали солнечные батареи.

Самое важное, о чем говорят уже первые, предварительные данные, это то, что человек сумел, послав точнейшие приборы на недоступную ранее высоту, добыть ценнейшие результаты о свойствах земной атмосферы.

Третий искусственный спутник является важнейшим шагом на пути создания космического корабля. Новая летающая лаборатория, оборудованная разнообразной научной аппаратурой, помогает раскрывать тайны природы. Это стало возможным благодаря ракетам – мощному средству исследований в таких областях, которые до недавнего времени оставались недоступными для человека.

Уже послана советская ракета в сторону Луны, она преодолела неизмеримо большее расстояние, чем от Земли до Луны. Не на тысячу семьсот, а на сотни миллионов километров удалилась она от нашей планеты.

Все более тяжелые спутники – тот путь, который действительно привел к подлинной победе человека над пространством. Поэтому третий наш спутник так удивил мир. Поэтому вызвала такое восхищение наша космическая ракета. Последняя ее ступень весит почти полторы тонны! Американские спутники-крошки, посланные, наконец, в пространство после ряда неудач, весили менее двадцати килограммов каждый, а небольшие лунные американские ракеты упали на Землю.

Полеты в мировое пространство, даже если бы удалось продлить маршрут как угодно далеко, не самоцель. Только с приборами, радиопередатчиками, а потом, возможно, и с телевизионной установкой стоит отправлять ракеты в дальний полет. Только тогда, оставаясь на Земле, мы словно побываем в космосе, сможем раскрыть его тайны.

Тем не менее даже маленькие искусственные космические тела, которые двигаются в окрестностях нашей планеты, оказывают огромную услугу науке. Они разведчики верхней атмосферы и могут пробыть в ней месяцы и годы. Наблюдая за ними, можно судить о плотности воздуха там, где обычные ракеты проводят лишь немногие минуты. Да и рекорд высоты остается за ними: им доступны самые крайние области воздушного океана. Они могут быть и исследователями планеты, вокруг которой совершают свой путь, – ее формы, силы тяжести на ней. Наконец они смогут служить маяками для навигации и помощниками географа. С помощью этих крошечных шариков будут уточняться карты громаднейшего шара – Земли, измеряться, и притом весьма точно, любые расстояния на нем.

Ежедневно с площадок метеостанций взмывают в воздух шары-пилоты. Ветер уносит их, и, следя за полетом, наблюдатели узнают о скорости и силе воздушных течений, хотя и не на слишком большой высоте. Маленький шарик ловят в особые подзорные трубы, его цепко, как прожектора самолет, держит на прицеле луч радиолокатора. Подобно шару-пилоту может летать, только уж на недоступных для воздухоплавателей высотах, шар-спутник, как и его младший собрат, тоже без приборов. Кстати, у них может быть сходство и по устройству: «небесный глаз» – легкая оболочка, которая выбросится из ракеты, – автоматически наполнится затем газом, раздуется, и маленький шарик заблестит в солнечных лучах ярче самой яркой звезды. Его легко сфотографировать или проследить за ним радиолучом.

Ежедневно взлетают в воздух шары-зонды – автоматические летающие метеостанции, уже с приборами и передатчиками. Радиосигналы докладывают о температуре, давлении, влажности.

И так во множестве мест, в строго определенные часы. Словно человек-великан оглядывает сверху свои владения, чтобы потом сказать: вот какую погоду ждите завтра! Это он говорит для всех: «Завтра, по сведениям Центрального института прогнозов...» К нему прислушиваются тогда летчики на аэродромах, капитаны в портах, альпинисты в походе, геологи в экспедициях, да и мы всегда с интересом слушаем сводку погоды. А в ее составлении участвовали тысячи станций, находящихся близ Северного и Южного полюсов, в горах и других глухих уголках, которые даже невозможно перечислить.

В космосе нет погоды. Но там будет своя служба – служба Солнца, космических лучей, метеоров и космической пыли, полярных сияний, магнитного поля Земли, ее облачного покрова. Подобно шарам-зондам, ее будут нести маленькие шары-спутники. Приборы на них непрерывно поведут наблюдения. Их запишет автомат на магнитную ленту. Когда космическая лаборатория станет пролетать над приемными станциями, включится передатчик: все, что записано, узнают тотчас же люди на Земле. Нечто похожее на разведку погоды... Но одна такая долго летающая в заоблачных далях звездочка способна заменить тысячи лабораторий на Земле.

Иссякнут батареи, замолчит передатчик, погибнет сам шарик – новые придут ему на смену. И если бы можно было, как делается в кино, снять сцены рождения и гибели каждой из этих созданных человеком звезд, а потом собрать их вместе, мы увидели бы фантастически красивую картину.

По небосводу, поблескивая, проносится яркая звезда. Вот она скрывается, затем появляется снова, и вдруг вместо нее уже тянется блестящий след, тянется и пропадает где-то у горизонта. На смену ей взлетает другая...

Впрочем, здесь мы уже забежали в будущее, охватив, правда, далеко не все, что будет. Будут не только спутники-крошки. Путь, несомненно, ведет к спутникам-гигантам, орбиты которых опояшут нашу планету и приблизятся к Луне. Этот путь начат первыми спутниками – пионерами будущих космических путешествий. Построив их, мы вступили в тот удивительный век, когда и до самой далекой планеты, оказывается, не так уже далеко.

НА СЛОВАХ И НА ДЕЛЕ

«В результате большой напряженной работы научно-исследовательских институтов и конструкторских бюро создан первый в мире искусственный спутник Земли...»

«Произведен успешный запуск первого спутника...»

«Ракета-носитель сообщила спутнику необходимую орбитальную скорость около 8000 метров в секунду...»

«Накоплен большой материал радиотехнических и оптических измерений...»

«Произведен запуск второго искусственного спутника Земли...»

«По данным измерений, полученных с борта спутника, функционирование научной аппаратуры и контроль за жизнедеятельностью животного протекают нормально...»

Так просто, буднично, лаконично звучали сообщения, которым жадно внимал мир.

На словах – просто. Но что скрывается за ними? Раскроем их, и тогда глубже поймем справедливость многих слов, произносившихся в те дни и вызванных одним чувством – гордостью, восхищением. «Величайший подвиг» – так оценили наша партия и правительство запуск спутников. Почему подвиг?

Воскресим несколько страничек недалекого прошлого.

Год 1930-й. Был сконструирован первый советский жидкостный ракетный двигатель. Организована Группа изучения реактивного движения (ГИРД), из которой вышло немало инженеров – активных деятелей советской ракетной техники. В работах ГИРД нашло отражение многое из того, что впоследствии получило широкое развитие в современном ракетостроении. Применение жидкого кислорода, охлаждение двигателя топливом, насосная подача, ракеты на жидком топливе, ракетный самолет и прочее – все эти проблемы практически разрабатывались работниками группы.

Эти и многие другие работы советских ученых имели большое значение для развития ракетной техники.

Следующая страница: наступил день рождения первой советской ракеты.

Год 1933-й, место действия – где-то под Москвой. Сегодня здесь, на огороженном забором участке, собралась группа людей. Они взволнованы – это видно по их лицам, чувствуется по их голосам. Около блиндажа, у пускового станка, тоже люди. В станке – серебристое удлиненное тело ракеты.

Окончена заливка топлива. Медленно нарастает давление. И бесконечным кажется ожидание всем: и тем, кто остался у ракеты, и тем, кто следит за стрелкой манометра, и тем, кто укрылся в блиндаже, и тем, кто уселся поблизости на деревьях, чтобы лучше увидеть первый взлет.

Наконец раздается долгожданное: «Контакт!» – «Есть контакт!» У основания станка показывается пламя. Двигатель ревет, но... ракета не трогается с места. Неужели неудача?! Вдруг она начинает медленно двигаться и, будто удлиняясь, скользит вдоль направляющих, вырывается в голубое небо. Летит! Летит, поворачивает и скрывается среди деревьев в лесу.

К ней бегут радостно возбужденные люди – участники запуска первой советской ракеты, о которой мечтал Циолковский.

Давно ли, кажется, это было? Всего четверть века отделяет нас от тех дней. Робкий прыжок, проба, разведка будущего.

А теперь... Ракета стала одной из самых совершенных и мощных машин на свете.

Миллионы киловатт развивает ее двигатель за короткое время подъема. Это больше, чем мощность самой крупной в мире гидростанции.

Со скоростью нескольких тысяч метров в секунду вытекают газы из сопла. Температуру в несколько тысяч градусов выдерживает камера сгорания.

Согласованно действуют тысячи деталей, которые составляют конструкцию и от каждой из которых зависит успех.

С величайшей точностью работает автоматика: она управляет полетом, отделяет отработавшие ступени ракетного поезда, выводит ракету на заданную орбиту, включает необходимые механизмы и приборы.

Достигнута была первая космическая скорость. Еще ни один летательный аппарат не мог двигаться так быстро: в пять раз быстрее артиллерийского снаряда сверхдальнобойной пушки, в десять раз быстрее самого скоростного современного самолета.

Приборы для спутника, его оборудование – это множество проблем, причем таких, какие еще никогда не решались инженерами. Необычайные условия работы – вот с чем прежде всего приходится здесь столкнуться. Резкие перемены давления и температуры, усиленная тяжесть и полное отсутствие ее, вредное действие излучений, метеоров и космической пыли, и в конце концов все-таки неизвестность: ведь это только первая вылазка в таинственный космос! Требовалось сочетание самых противоречивых свойств: легкость, малые размеры, малое потребление энергии, прочность, выносливость, точность и надежность в работе. И всего этого добились инженеры.

Нет, не просто запустить в космос даже «кусок железа» – каждый шаг вверх дается с боя. Взрывы американских ракет, которых много было за последнее время, красноречивее слов говорят об этом. Вот почему мы искренне приветствовали ученых Америки, сумевших все-таки справиться с величайшими трудностями запуска искусственных спутников Земли. Вот почему мы приравняли к подвигу труд наших ученых, инженеров, рабочих.

Но ведь топливо, материалы, двигатель, ракета – это еще не все. Для того чтобы обеспечить успех, надо было в буквальном смысле слова заглянуть в будущее. Ракета еще не поднималась с Земли, а в научных институтах занимались космической аэродинамикой, изучали явления, происходящие в разреженной атмосфере при огромных сверхзвуковых скоростях. Ракета только готовилась к подъему, а ее путь – наивыгоднейший из всех возможных, – ученые определяли сложнейшими расчетами.

Спутник нужно было сначала поднять на заданную высоту, а потом точно вывести на круговую орбиту. Как лучше это сделать с наименьшими потерями энергии – вопрос труднейший, и его предстояло решить, привлекая математику и механику, используя всю мощь вычислительной техники. Небольшое, хотя бы в один градус, отклонение направления полета – и путь сместится на сто двадцать километров над Землей! Ошибка в скорости на несколько десятков метров в секунду отзовется более чем стокилометровым изменением орбиты. В результате спутник может войти в плотные слои атмосферы и сгореть, не начав своего обращения вокруг планеты.

И эта труднейшая задача была решена.

Когда же спутник появился над планетой и целая сеть станций, разбросанных по всему миру, повела наблюдение за ним, вычислительные машины, тоже техническое чудо наших дней, обрабатывали обширный материал, точно предсказывая путь маленькой луны.

А какая гигантская работа предшествовала полету первого космического путешественника – Лайки! Сколько упорства, самоотверженности – того, что не измеришь обычными мерками, потребовало снаряжение летающей лаборатории, которая пробыла в космосе почти полгода!

Мало того, что нужен был целый приборный арсенал, который позволял бы вести различные измерения и наблюдения, переводя их затем на язык электрических колебаний и далее в радиоволны. Понадобилось обеспечить уверенную передачу и прием сигналов сквозь ионосферу – броню для электромагнитных волн. Конечно, имелся уже некоторый опыт, ракеты летали на сотни километров ввысь, но одно дело – кратковременный взлет, другое – недели полета.

Однако и это еще не все. Приборы и передатчик без источников электроэнергии годны только для того, чтобы любоваться ими на выставке, удивляясь искусству рук и ума, их создавших. Остроумнейшие приспособления позволяли получить и передать по радио на Землю ответ на любой вопрос. Как чувствует себя в космосе живое существо? Каковы там космические лучи? Насколько сильно рентгеново излучение Солнца? Но если не будет тока – откажет связь. Спутнику нужна электростанция – тоже крошка, батарея фотоэлементов – преобразователей солнечных лучей или радиоактивных излучений. Скоро нас не удивит уже такой электрогенератор размером с небольшую пуговицу, способный летать пять лет подряд. А если вдуматься – какой гигантский в эту маленькую батарейку будет вложен труд! Полупроводники и солнечные батареи только начали входить в жизнь, и они уже получают крещение в космосе – на спутнике, будут они и на межпланетных кораблях.

Солнце вне Земли всегда ярко светит, но все-таки надо, чтобы батарея неизменно была повернута к нему, чтобы лучи отвесно падали на нее. Движение спутника тут серьезная помеха: он в полете беспорядочно поворачивается, хотя и летит по заданной ему кривой. Поэтому необходимо сконструировать специальное следящее устройство – астроориентатор, который сможет постоянно удерживать батарею направленной на Солнце. Еще одна и сложная проблема! Решить ее совершенно необходимо. И над ней успешно работают. Будущим спутникам с фотоаппаратами или телевизорами на борту нельзя кувыркаться как попало.

Слово «тысячи» не раз встречалось в нашем рассказе. Скорости, градусы, детали. И главное – люди. Тысячи людей вложили себя – свой талант, свои руки, время, мозг свой – в одно общее дело. Обелиск на Ленинских горах – память и слава каждому из них, от главных конструкторов до «простых» рабочих: простых в кавычках, ибо не просто рабочий, а человек с золотыми руками готовил ту или иную деталь, тот или иной «свой» винтик, ушедший в космос.

Можно сказать: но ведь так же бывало и раньше. Разве атомная электростанция и ледокол «Ленин», синхрофазотрон и воздушные лайнеры, наконец ракеты – победители пространства, хотя бы межконтинентальная, которой доступна любая точка земного шара, – разве это не «чудеса»? Да, конечно! Однако ни разу еще так ярко не проявлялось содружество многих наук. Ни разу еще так согласованно и дружно не выступали техника и промышленность для решения такой сложнейшей задачи – едва ли не самой сложной из всех задач, какие когда-либо ставил перед собой человек. Недаром слово «спутник» теперь, с тех пор как спутники появились над планетой, стали все чаще писать с большой буквы! Мы говорили до сих пор об искусственных спутниках Земли, но то же самое, и еще в большей мере, относится к запуску в космос нашей ракеты – спутника Солнца.

Спутники и первая космическая ракета разбудили мысли всех людей, где бы они ни жили, чем бы ни занимались. Они заставили призадуматься тех, кто желал бы ввергнуть мир в пучину войны. Они изменили весь политический климат на земном шаре. А если говорить о том, что они сделали для науки, какие горизонты открыли для техники, на ум приходит снова слово «подвиг». Первооткрыватели – этим сказано все. Мы чтим Колумба и Галилея, Ньютона и Коперника, Менделеева и Циолковского. Мы чтим тех, кто открывает дорогу к новым мирам!

ПЕРВЫЙ ВЕЛИКИЙ ШАГ

«Стремление к космическим путешествиям заложено во мне известным фантазером Жюлем Верном», – вспоминал Константин Эдуардович Циолковский. Жюль Верн в своих романах писал о том, как люди в снаряде гигантской пушки отправились на Луну, как снаряд превратился в спутника Земли, в ее вторую крошечную луну. Мечте Жюля Верна суждено было осуществиться иным путем. Не пушечное ядро, а ракета может победить земное притяжение. На нее, как на подлинный корабль вселенной, первым в мире указал Циолковский.

Он любил мечтать. Но мечта его покоилась на твердом фундаменте созданной им науки – астронавтики. Больше полувека тому назад К. Э. Циолковский написал замечательные слова: «...Можно устроить постоянную обсерваторию, движущуюся за пределами атмосферы неопределенно долгое время вокруг Земли, подобно ее Луне». И вот начинают сбываться его пророческие слова. Ракеты доставили к границам атмосферы маленькие летающие лаборатории.

Иногда по вечерам Циолковский выходил на крышу своего дома, чтобы полюбоваться величественной панорамой звездного неба. Быть может, его мысленному взору представлялись тогда картины будущего. Вот, сверкнув огненной полоской в темном небе, мчится ракетный корабль с первыми путешественниками в космос... Вот среди звезд плывет по небу светящаяся точка, сама похожая на слабую звездочку. Но это не звезда и не планета, а созданное руками человека новое небесное тело – спутник Земли.

В наше время наука и техника развиваются такими быстрыми темпами, что за ними трудно угнаться даже самому смелому воображению. Сравнительно недавно начались подъемы ракет для исследования атмосферы. И вот уже мы стали свидетелями блестящих достижений ракетной техники. Успешные испытания межконтинентальной баллистической ракеты... Подъемы геофизических ракет, осуществляющих обширную программу исследований в верхних слоях атмосферы... Первые спутники Земли... Все эти выдающиеся достижения говорят об исключительно высоком уровне развития советского ракетостроения.

Наша страна, по всеобщему признанию, намного опередила другие технически передовые государства мира. Крупный немецкий специалист, конструктор первой баллистической ракеты «фау–2» доктор Вернер фон Браун, ныне работающий в Америке, заявил, что Соединенные Штаты отстали от русских не менее чем на пять лет.

Советскому Союзу – родине современного ракетостроения и астронавтики – принадлежит первенство в изучении с помощью ракет космического пространства.

Создание спутников – величайший триумф современного ракетостроения. Оно наглядно показало, какими возможностями обладает ракета, ставшая важнейшим орудием науки. Впереди – новые победы в борьбе за раскрытие тайн природы в интересах науки и практики.

Значение создания первых в мире спутников Земли трудно переоценить. Наблюдения за ними и за другими спутниками, которые будут запущены в дальнейшем, несомненно, дали уже и дадут еще ценнейшие научные результаты. Свойства самых верхних слоев атмосферы, изучение солнечных и космических лучей на огромных высотах, наблюдение за магнитным полем Земли – таков далеко не полный перечень проблем, которые могут быть решены с помощью искусственных спутников.

Запуск искусственного спутника – первый великий шаг, сделанный человеком на пути во вселенную. «Великий шаг», – подчеркивал Циолковский.

Научной лабораторией стала отныне вся планета, и ее можно наблюдать всю целиком: не отдельные кусочки, а картину в целом и притом без каких бы то ни было помех! «Ныне, когда осуществлен прорыв в космос, можно сказать, что возможности для научных исследований здесь поистине неисчерпаемы». Эти слова принадлежат трезвым мыслителям-ученым. Но какой же простор они открывают воображению! Тут уместно еще раз вспомнить о солнечных и космических лучах, которые задерживаются атмосферой, о загадках ионосферы, о капризах погоды. Но мы коснемся еще и другого, в чем спутникам также принадлежит исключительная роль.

Физика учит, что при больших, сравнимых со световой, скоростях начинают действовать особые законы. Существует предел для скорости – никакое тело не может двигаться быстрее, чем свет в пустоте. С приближением к пределу, тремстам тысячам километров в секунду, масса движущегося тела возрастает. На примере электрона практика подтверждает справедливость этого вывода, кажущегося парадоксальным. Разогнав электрон до чудовищной скорости в электромагнитном поле, ученые убедились, что он «отяжелел», увеличил свою массу в соответствии с теорией относительности, которая предсказала и объяснила это «чудо» движения, времени и пространства.

Меняется при таких скоростях и ход времени. На корабле вселенной, мчащемся со скоростью, близкой к световой, и на Земле оно будет течь различно. По «земному» времени пройдет, например, сто лет, по корабельному, «звездному» – десять. Почему это так, можно показать пока лишь с помощью математики.

Перенестись, как на уэллсовской машине времени, на сто лет вперед – что, казалось бы, может быть невероятнее? Ракета отдаленного будущего открывает перспективы поистине фантастические! Замедлить бег времени, перепрыгнуть через столетие! Трудно поверить в реальность подобного. Но в этом нет никакого чуда, как нет чуда и во всем другом явлении, которым управляют пока еще непривычные нам законы природы.

Справедливость парадокса времени подтверждается на примере элементарной частицы – мезона. Продолжительность жизни мезона возрастает, если скорость его становится сравнимой со световой. И наблюдаем мы это явление лишь потому, что время для быстродвижущейся частицы и неподвижного наблюдателя течет различно.

Однако это наблюдалось пока что лишь в микромире. Проверить справедливость такого невероятного, казалось бы, явления для наших привычных масштабов было нельзя – просто потому, что на Земле никто не двигался с космической скоростью!

Но появились спутники, и положение изменилось. Правда, восемь километров в секунду – не слишком-то много. Пройдут месяцы, прежде чем обнаружится разница в счете времени на Земле и на искусственной луне. Да и разница, как предсказывает теория, окажется ничтожно малой – крохотные доли секунды. И все-таки она должна существовать! Уловить ее помогут сверхточные часы, а такими располагает сейчас наука. Миллиардная часть секунды – не предел для современных способов измерения времени. Подобные часы будут установлены на спутнике, они уловят разницу, и этим подтвердится один из самых удивительных фактов, с какими столкнется человек, ставший властелином больших скоростей.

Только спутники и автоматические ракеты разведают, как встретит космос человека, а он придет туда – сначала как гость, потом как хозяин. Только они всесторонне разведают трассы будущих небесных кораблей – и тех, которые устремятся в космос, чтобы вскоре вернуться обратно, и тех, которые покинут планету надолго, чтобы посетить иные миры.

Уже сейчас выдвигаются проекты ракет–орбитальных кораблей. На таком корабле, представляющем собой обитаемый спутник, человек сможет совершить более или менее длительный полет в прилегающей к Земле области космического пространства. Помимо чисто исследовательских целей, полеты орбитальных кораблей будут преследовать и цели тренировки к будущим межпланетным перелетам. Выход на круговую орбиту позволит также со временем приступить к постройке внеземной станции – постоянного обитаемого спутника, который будет использоваться для научных исследований и в качестве базы межпланетных кораблей.

Обогатятся науки «земные», но и «небесные» не останутся в стороне. Еще до первого космического полета спутники, вероятно, вынесут за пределы атмосферы глаз астронома – телескоп. И когда ученые получат кассету с пленкой – записи, снимки, сделанные на заатмосферной обсерватории, – для них такой опыт будет значить не меньше, чем полет Лайки для биологов и врачей.

Еще не спустившись на дно океана, люди многое узнали о тайнах больших глубин. Нет сомнения в том, что скоро глубоководный снаряд доставит туда человека. Так и с неизведанными просторами космоса. Еще не побывав там, мы ныне за несколько месяцев узнали о нем столько, сколько не могли узнать за века.

Вот почему справедливо называл Циолковский великим этот первый шаг в космос. Даже если бы все ограничилось только разведкой, «великий» – не преувеличение. Но дело не в одном настоящем. Быть может, важнее будущее, ставшее теперь словно ближе, а главное – реальнее для нас. Просто вере приходит на смену твердая уверенность: космические полеты человека – наше близкое завтра! Вчерашняя сказка становится сегодняшней былью!

Вот почему поистине велик сделанный нами первый шаг.

ОТ СПУТНИКОВ – К ПЛАНЕТАМ, ОТ ПЛАНЕТ – К ЗВЕЗДАМ

Что будет дальше? За первым спутником последовали второй и третий. К ним присоединились их младшие американские собратья. Целый хоровод крошечных лун носился вокруг нашей планеты. Постепенно он таял, потому что едва ощутимые следы атмосферы со временем все же давали о себе знать. И, сослужив свою службу, спутники погибали один за другим. Но всегда ли будут спутники сгорать как метеоры? Мы уверенно говорим о будущих искусственных небесных телах в окрестностях Земли, так как твердо знаем: первые – только начало. Предстоит решить немало новых и еще более интересных задач.

Поговорим прежде всего о возвращении спутников. Этот вопрос, естественно, уже сейчас волнует ученых. Снимки земного шара, сделанные из мирового пространства, с огромнейших, пока еще не достигнутых высот, снимки звездного неба, Луны и планет, фотографии со следами космических частиц – вот что хотелось бы получить нам со спутника. Итак, кассета с пленкой должна вернуться из космоса целой и невредимой. И, наконец, вслед за приборами человек должен покинуть Землю и возвратиться на нее!

Скорость входа спутника в атмосферу – несколько километров в секунду. При такой скорости даже в сильно разреженном газе нагрев от трения будет чрезвычайно велик. Недаром вслед за скоростным – «звуковым» – барьером авиация встретила барьер тепловой. Из ракет с ним столкнулись прежде других крупные ракеты, межконтинентальные и носители спутников Земли. Им ведь приходится преодолевать всю толщу атмосферы. С тем же столкнемся мы и здесь, причем условия будут еще тяжелее: судьба метеоров, гибнущих у нас на глазах, показывает, что ждет спутник, если предоставить ему просто упасть.

Даже при скорости примерно десять тысяч километров в час обшивка ракеты нагревается более чем на семьсот градусов! Нагрев снижается, но не уничтожается, благодаря выбору наиболее удобообтекаемой формы и тщательной обработке всех наружных поверхностей. Приходится отдельные части изготовлять из жаростойких сплавов, или пластмасс, да притом обшивку устраивать слоистой: жертвовать одними слоями для спасения других. Можно также охлаждать стенки корпуса, изготовив их из пористого материала и пропуская через поры жидкость, отнимающую тепло.

У спутника, который надо приземлить, есть все же одно преимущество: он начинает свой путь в почти полной пустоте. Атмосфера же не становится плотной сразу. Выход напрашивается сам собой: пользуясь атмосферой как тормозом, постепенно снижать скорость, а затем с помощью выдвижных крыльев осуществить плавный планирующий спуск. Спутнику придется на время стать самолетом, вернее – планером. Впрочем, можно и полностью уподобить его самолету, если снабдить соответственной силовой установкой – тормозным ракетным двигателем, который будет управляться автоматически.

Есть много предложений доставки на Землю наиболее ценной пленки с результатами наблюдений, в то время как спутник будет продолжать полет. Вот наиболее известное из них.

Закончены съемки, и пленка целиком заснята. Автомат вкладывает ее в кассету-патрон, тот, в свою очередь, попадает в парашют, сложенный в виде шара, соединенного с газовым баллоном. У шара имеется маленькая тормозная ракета. Сначала на этой ракете, потом на заполненном газом шаре и совершит приземление кассета с пленкой. Радиопередатчик-маяк известит, куда она опустилась.

Конечно, и спутник и шар-парашют придется покрыть защитной тепловой изоляцией. Тут пригодятся жаростойкие сплавы или керамика, а также охлаждение.

Скоро наступит время, когда так же, как сейчас из высотного полета, будут прибывать на Землю пленки, приборы и пассажиры после многих кругосветных путешествий на спутнике, у порога космического пространства.

Вырастет семья спутников, расширится и станет многообразней их служба. Одни будут помогать метеорологам: летая по разным орбитам, они смогут «видеть» погоду сразу на всем земном шаре. Те, чей путь пройдет над полярными областями, сообщат также о дрейфе льдов в арктических морях.

Спутники – охотники за космическими лучами, наблюдающие за Солнцем, за метеорами... Спутники – физические лаборатории, где можно изучать межзвездное вещество, ставить опыты, проверять теории и догадки... Спутники с фотоаппаратами, кинокамерами, телевизионными передатчиками... Спутники с телескопами... Спутники-радиомаяки – ориентиры для морских и воздушных кораблей, спутники–отражатели коротких радиоволн, которые обеспечат дальнюю связь и телевещание на всю планету... Этот перечень будущее еще увеличит, но и сейчас нетрудно понять, что даст постоянный рой лун, кружащихся на разных высотах и с разными целями над нашей планетой. Человек как бы обретет новое зрение – сетью наблюдательных постов опояшет свою Землю.

Он создаст и настоящее подобие Луны: вечные спутники, пролетающие уже не на границах атмосферы, а на огромных высотах, в космической пустоте. И астрономы занесут в «инвентарную книгу» солнечной системы рожденных Землею новых членов планетной семьи.

Будет меняться и конструкция спутников. Новые источники электроэнергии – атомные батареи – позволят питать током приборы и передатчики в течение нескольких лет. Долговечными будут и полупроводниковые гелиоустановки с аккумуляторами, дающими ток, когда спутник попадет в тень Земли. Научную аппаратуру приспособят к необычным условиям космоса, и получать оттуда всевозможные сведения уже станет будничным делом геофизиков, астрономов, географов, врачей. А затем от автоматических лабораторий перейдут к внеземным станциям, к обитаемым спутникам – о них у нас пойдет отдельный разговор.

Со временем появятся и такие спутники, которые придется повысить в астрономическом ранге. Пока что создания наших рук хотя и залетают за атмосферу, но не слишком удаляются от нее. Управляемые спутники, снабженные двигателями, смогут переходить с орбиты на орбиту. Мы привыкли к сочетанию слов: «управляемый снаряд», привыкнем и к словам: «управляемый спутник». Спутники можно будет заставить описывать более удаленные орбиты, забираться все дальше и дальше в космос для все более глубокой его разведки. По существу, спутник – ближайший родственник межпланетного корабля, если, конечно, им управлять. Ведь выбравшись в пустое, свободное от тяжести пространство, легче направиться дальше – и к Луне и к планетам. Главное уже позади. Еще раз приходит на ум справедливость слов Циолковского о спутнике – это поистине великий шаг!

Ракета с силой тяги в сотни тонн нужна для того, чтобы забросить спутник на орбиту. Ракета-малышка весом всего в пять с половиной килограммов может «столкнуть» с кругового пути шар-парашют и помочь ему спуститься на Землю. И из окрестностей Земли, с постоянной круговой орбиты за атмосферой, имея двигатель, нетрудно уйти, – во всяком случае, гораздо проще, чем сразу отправиться в космический полет. Тут можно обойтись значительно меньшей тягой – не на сотни тонн, а на килограммы и даже на граммы может пойти тогда счет.

Возможно, «странствующие» искусственные спутники направятся к нашему естественному спутнику, чтобы стать его лунами и изучить Луну вблизи. Они смогут обогнуть Венеру и Марс. Наконец они когда-нибудь превратятся и в спутников Солнца, подобно планетам, выбирая тот или иной маршрут, совершат путешествие по солнечной системе.

Предложено было, например, поставив на ракету-спутник небольшой «движок», отправить ее в длительный рейс к планетам. Телепередатчик, локатор, всевозможные приборы, радиоустановки для связи с Землей, автоматическое управление – таково оборудование этой искусственной планетки. Только в отличие от настоящей планеты она по нашей воле будет посещать те уголки солнечных владений, куда мы захотим ее послать. На ней можно будет поселить растения и животных – космический живой уголок, в котором люди будут вести постоянные наблюдения. Первый опыт с Лайкой ведь уже себя оправдал!

В условиях подлинного межпланетного полета проверят двигатели, аппаратуру, точность расчетов небесной навигации, произведут разведку иных миров. Конечно, пока это лишь фантазия. Однако в наше время жизнь быстро обгоняет самую смелую научную мечту. Давно ли первые спутники существовали лишь в проектах и расчетах! Давно ли полеты в космос были излюбленной темой фантастических романов! А сегодня мы уже послали ракету в просторы вселенной. Сквозь даль времен, писал Циолковский, виднеются перспективы до такой степени обольстительные и важные, что о них едва ли кто-нибудь и мечтает. Но мы, свидетели появления спутников и первой космической ракеты, можем и будем мечтать!

Ракеты помогут изучить и освоить планеты. А после планет люди грядущего отправятся в межзвездный перелет.

Тысячи лет мечте о полете к звездам. Эта древняя, заветная и вечно юная мечта владела умами многих поколений людей. Нам выпало счастье жить в эпоху великих свершений, когда самая смелая выдумка бледнеет перед былью наших дней. Мы увидели, как начинают идти к звездам!

2. См. «Сверхзвуковые самолеты», стр. 121.

Назад   В начало   Вперёд



Русская фантастика > ФЭНДОМ > Фантастика >
Книги | Фантасты | Статьи | Библиография | Теория | Живопись | Юмор | Фэнзины | Филателия
Русская фантастика > ФЭНДОМ >
Фантастика | Конвенты | Клубы | Фотографии | ФИДО | Интервью | Новости
Оставьте Ваши замечания, предложения, мнения!
© Фэндом.ru, Гл. редактор Юрий Зубакин 2001-2018
© Русская фантастика, Гл. редактор Дмитрий Ватолин 2001
© Дизайн Владимир Савватеев 2001
© Верстка Алексей Жабин 2001